Plant Virus Structure


Wiki source

Plant viruses need to be transmitted by a vector, most often insects such as leafhoppers. One class of viruses, the Rhabdoviridae, has been proposed to actually be insect viruses that have evolved to replicate in plants. The chosen insect vector of a plant virus will often be the determining factor in that virus's host range: it can only infect plants that the insect vector feeds upon. This was shown in part when the old world white fly made it to the United States, where it transferred many plant viruses into new hosts. Depending on the way they are transmitted, plant viruses are classified as non-persistent, semi-persistent and persistent. In non-persistent transmission, viruses become attached to the distal tip of the stylet of the insect and on the next plant it feeds on, it inoculates it with the virus. Semi-persistent viral transmission involves the virus entering the foregut of the insect. Those viruses that manage to pass through the gut into the haemolymph and then to the salivary glands are known as persistent. There are two sub-classes of persistent viruses: propagative and circulative. Propagative viruses are able to replicate in both the plant and the insect (and may have originally been insect viruses), whereas circulative can not. Circulative viruses are protected inside aphids by the chaperone protein symbionin, produced by bacterial symbionts. Many plant viruses encode within their genome polypeptides with domains essential for transmission by insects. In non-persistent and semi-persistent viruses, these domains are in the coat protein and another protein known as the helper component. A bridging hypothesis has been proposed to explain how these proteins aid in insect-mediated viral transmission. The helper component will bind to the specific domain of the coat protein, and then the insect mouthparts — creating a bridge. In persistent propagative viruses, such as tomato spotted wilt virus (TSWV), there is often a lipid coat surrounding the proteins that is not seen in other classes of plant viruses. In the case of TSWV, 2 viral proteins are expressed in this lipid envelope. It has been proposed that the viruses bind via these proteins and are then taken into the insect cell by receptor-mediated endocytosis.