Wiki source

Because of its cost and radioactivity, experimental chemical research is seldom performed with radon, and as a result there are very few reported compounds of radon, all either fluorides or oxides. Radon can be oxidized by powerful oxidizing agents such as fluorine, thus forming radon difluoride. It decomposes back to its elements at a temperature of above 250 Â°C, and is reduced by water to radon gas and hydrogen fluoride: it may also be reduced back to its elements by hydrogen gas. It has a low volatility and was thought to be RnF2. Because of the short half-life of radon and the radioactivity of its compounds, it has not been possible to study the compound in any detail. Theoretical studies on this molecule predict that it should have a Rn–F bond distance of 2. 08 Ã…, and that the compound is thermodynamically more stable and less volatile than its lighter counterpart XeF2. The octahedral molecule RnF6 was predicted to have an even lower enthalpy of formation than the difluoride. The higher fluorides RnF4 and RnF6 have been claimed, and are calculated to be stable, but it is doubtful whether they have yet been synthesized. The [RnF]+ion is believed to form by the following reaction: